
multitables Documentation
Release 2.0.0

G. H. Collin

May 01, 2021

Contents

1 Contents 3
1.1 Quick Start . 3
1.2 How To . 4
1.3 Streamer . 4
1.4 Reader . 6
1.5 Benchmarking . 8
1.6 Reference . 12

2 Licence 17

3 Indices and tables 19

Python Module Index 21

Index 23

i

ii

multitables Documentation, Release 2.0.0

multitables is a python library designed for high speed access to HDF5 files. Access to HDF5 is provided by the
PyTables library (tables). Multiple processes are launched to read a HDF5 in parallel, allowing concurrent decom-
pression. Data is streamed back to the invoker by use of shared memory space, removing the usual multiprocessing
communication overhead.

The data is organised by rows of an array (elements of the outer-most dimension), and groups of these rows form
blocks. By default, there is no guarantee on the ordering of the rows and/or blocks returned to the user, due to the
concurrent nature of the library. They are returned as they become available. On-disk ordering can be forced using the
ordered option, which may result in a performance penalty.

Performance gains of at least 2x can be achieved when reading from an SSD.

Contents 1

https://github.com/ghcollin/multitables

multitables Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Contents

1.1 Quick Start

1.1.1 Installation

pip install multitables

Alternatively, to install from HEAD, run

pip install git+https://github.com/ghcollin/multitables.git

You can also download or clone the repository and run

python setup.py install

multitables depends on tables (the pytables package), numpy, msgpack, and wrapt. The package is com-
patible with the latest versions of Python 3, as pytables no longer supports Python 2.

1.1.2 Quick start: Streaming

import multitables
stream = multitables.Streamer(filename='/path/to/h5/file')
for row in stream.get_generator(path='/internal/h5/path'):

do_something(row)

1.1.3 Quick start: Random access

3

https://github.com/ghcollin/multitables/archive/master.zip
https://github.com/ghcollin/multitables

multitables Documentation, Release 2.0.0

import multitables
reader = multitables.Reader(filename='/path/to/h5/file')

dataset = reader.get_dataset(path='/internal/h5/path')
stage = dataset.create_stage(10) # Size of the shared

memory stage in rows

req = dataset['col_A'][30:35] # Create a request as you
would index normally.

future = reader.request(req, stage) # Schedule the request
with future.get_unsafe() as data:

do_something(data)
data = None # Always set data to None after get_unsafe to

prevent a dangling reference

... or use a safer proxy method

req = dataset.col('col_A')[30:35,...,:100]

future = reader.request(req, stage)
with future.get_proxy() as data:

do_something(data)

... or provide a function to run on the data

req = dataset.read_sorted('col_C', checkCSI=True, start=200, stop=300)

future = reader.request(req, stage)
future.get_direct(do_something)

... or get a copy of the data

req = dataset['col_A'][30:35,np.arange(500) > 45]

future = reader.request(req, stage)
do_something(future.get())

once done, close the reader
reader.close(wait=True)

1.1.4 Examples

See the How-To for more in-depth documentation, and the unit tests for complete examples.

1.2 How To

All uses of the library start with creating a Streamer object, or a Reader object.

1.3 Streamer

The Streamer is designed for reading data from the dataset in approximately (or optionally forced) sequential order.

4 Chapter 1. Contents

https://github.com/ghcollin/multitables/blob/master/multitables_test.py

multitables Documentation, Release 2.0.0

import multitables
stream = multitables.Streamer(filename="/path/to/h5/file", **kw_args)

Additional flags to pytables’ open_file function can be passed through the optional keyword arguments.

1.3.1 Direct access

multitables allows low level access to the internal queue buffer. This access is synchronised with a guard object. When
the guard object is created, an element of the buffer is reserved until the guard is released.

queue = stream.get_queue(
path='/h5/path/', # Path to dataset within the H5file.
n_procs=4, # Number of processes to launch for parallel reads. Defaults to

→˓4.
read_ahead=5, # Size of internal buffer in no. of blocks. Defaults to 2*n_

→˓proc+1.
cyclic=False, # A cyclic reader wraps at the end of the dataset. Defaults to

→˓False.
block_size=32, # Size (along the outer dimension) of the blocks that will be

→˓read.
Defaults to a multiple of the dataset chunk size, or a 128KB

→˓block.
Should be left to the default or carefully chosen for chunked

→˓arrays,
else performance degradation can occur.

ordered=False # Force the stream to return blocks in on-disk order. Useful if
→˓two

datasets need to be read synchronously. This option may have a
performance penalty.

)

while True:
guard = queue.get() # Get the guard object, will block until data is ready.
if guard is multitables.QueueClosed:

break # Terminate the loop once the dataset is finished.
with guard as block: # The guard returns the next block of data in the buffer.

do_something(block) # Perform actions on the data

Note that block here is a numpy reference to the internal buffer. Once the guard is released, block is no longer
guaranteed to point to valid data. If the data need to be saved for later use, make a copy of it with block.copy().

Iterator

A convenience iterator is supplied to make loop termination easier.

for guard in queue.iter():
with guard as block:

do_something(block)

Remainder elements

In all the previous cases, if the supplied read_size does not evenly divide the dataset then the remainder elements
will not be read. If needed, these remainder elements can be accessed using the following method

1.3. Streamer 5

multitables Documentation, Release 2.0.0

last_block = stream.get_remainder(path, queue.block_size)

Cyclic access

When the cyclic mode is enabled, the readers will wrap around the end of the dataset. The check for the end of the
queue is no longer needed in this case.

while True:
with queue.get() as block:

do_something(block)

In cyclic access mode, the remainder elements are returned as part of a wrapped block that includes elements from the
end and beginning of the dataset.

Once finished, the background processes can be stopped with queue.close().

1.3.2 Generator

The generator provides higher level access to the streamed data. Elements from the dataset are returned one row at a
time. These rows belong to a copied array, so they can be safely stored for later use. The remainder elements are also
included in this mode.

gen = stream.get_generator(path, n_procs, read_ahead, cyclic, block_size)

for row in gen:
do_something_else(row)

This is supposed to be in analogy to

dataset = h5_file.get_node(path)

for row in dataset:
do_something_else(row)

When cyclic mode is enabled, the generator has no end and will continue until the loop is manually broken.

1.3.3 Concurrent access

Python iterators and generators are not thread safe. The low level direct access interface is thread safe.

1.4 Reader

The Reader is designed for random access, using an interface that is as close as possible to numpy indexing opera-
tions.

import multitables
reader = multitables.Reader(filename="/path/to/h5/file", **kw_args)

Additional flags to pytables’ open_file function can be passed through the optional keyword arguments.

6 Chapter 1. Contents

multitables Documentation, Release 2.0.0

1.4.1 Dataset and stage

The basic workflow is to first open the desired dataset using the internal HDF5 path.

dataset = reader.get_dataset(path='/internal/h5/path')

Then, a stage must be created to host random access requests. This stage is an area of shared memory that is allocated
and shared with the background reader processes. The result of all requests made with this stage must fit inside the
allocated memory of the stage.

stage = dataset.create_stage(shape=10)

The provided shape parameter may be the full shape of the stage using the datatype of the dataset. Or, the shape may
be left incomplete and the missing shape dimensions will be filled with the dataset shape. In this example, only the
first dimension is specified, as so this stage has room for 10 rows of the dataset.

1.4.2 Requests

Requests happen through three operations. First, the description of a request is made through an indexing operation
on the dataset.

req = dataset['col_A'][30:35]

Next, a future is made and a background task scheduled to fetch the requested data and load it into the provided stage.

future = reader.request(req, stage)

Finally, the future is waited upon using a get operation. Four types of get operations are provided. The first and
simplest blocks on the task and returns a copy of the data.

data = request.get()

In the next type, a copy is avoided by providing a function that will be run with the data as the only argument. This
get operation also blocks until the data is available and the provided function finishes.

def do_something(data):
pass

data = request.get_direct(do_something)

The remaining two get operations use context managers to control access to the shared memory resource without
creating a copy. The first is unsafe, in that if the resulting reference is not properly disposed of, memory errors may
result.

with future.get_unsafe() as data:
do_something(data)

data = None # Properly dispose of the reference

The final uses a wrapper object on the returned data, so that if the reference is not properly disposed of, an exception
will be safely called.

with future.get_unsafe() as data:
do_something(data)

data = None # Properly dispose of the reference

1.4. Reader 7

multitables Documentation, Release 2.0.0

1.4.3 Cleaning up

Once finished, call the close method on the reader object.

reader.close(wait=True)

If the provided wait parameter is True, the close call will block until all background threads and processes have
cleanly shut down.

1.4.4 Concurrent access pattern

The following is an example of launching and reading requests in separate threads. This uses the
create_stage_pool method, that creates N_stages separate stages and places them in a rotating pool.

The RequestPool object is then used to create a queue of pending futures that returns futures in the same order that
they are inserted.

N_stages = 10

stage_pool = dataset.create_stage_pool(1, N_stages)

reqs = multitables.RequestPool()

table_len = dataset.shape[0]
def loader():

for idx in range(table_len):
reqs.add(reader.request(dataset[idx:idx+1], stage_pool))

loader_thread = threading.Thread(target=loader)
loader_thread.start()

for idx in range(table_len):
do_something(reqs.next().get())

reader.close(wait=True)

1.5 Benchmarking

These benchmarks have been performed with multitables_benchmark.py. Two compression methods are bench-
marked, along with three different storage devices.

Note that the data used are random numbers from a normal distribution, which is not compressible. Thus, the numbers
here reflect only the decompression overhead, and not the performance benefit that compression can give. They are
intended to give a rough idea on the number of default processes to use, as well as the possible performance benefit of
using this library.

Your mileage may vary, with factors including the workload, compression ratio, specific storage configuration, system
memory, and dataset size. If your dataset fits wholly within the filesystem cache, your reads speeds will be significantly
higher.

The following benchmarks use a 4GB file, reading two cycles, on a Haswell-E linux machine.

1.5.1 Using blosc

8 Chapter 1. Contents

https://github.com/ghcollin/multitables/blob/master/multitables_benchmark.py

multitables Documentation, Release 2.0.0

NVMe SSD

Direct queue

Table 1: pytables complevel (down) vs. number of parallel processes
(across)

1 2 3 4 5 6 7 8 9 10 11 12
0 954

MB/s
1694
MB/s

2061
MB/s

2380
MB/s

2399
MB/s

2400
MB/s

2252
MB/s

2346
MB/s

2221
MB/s

2377
MB/s

2252
MB/s

2260
MB/s

3 952
MB/s

1729
MB/s

2087
MB/s

2368
MB/s

2379
MB/s

2372
MB/s

2285
MB/s

2143
MB/s

2368
MB/s

2369
MB/s

2286
MB/s

2237
MB/s

9 394
MB/s

777
MB/s

1143
MB/s

1509
MB/s

1748
MB/s

2107
MB/s

2088
MB/s

2217
MB/s

2221
MB/s

2323
MB/s

2339
MB/s

2314
MB/s

Generator

Table 2: pytables complevel (down) vs. number of parallel processes
(across)

1 2 3 4 5 6 7 8 9 10 11 12
0 841

MB/s
1466
MB/s

1691
MB/s

1765
MB/s

1762
MB/s

1765
MB/s

1741
MB/s

1755
MB/s

1698
MB/s

1886
MB/s

1654
MB/s

1705
MB/s

3 834
MB/s

1430
MB/s

1668
MB/s

1693
MB/s

1712
MB/s

1659
MB/s

1669
MB/s

1618
MB/s

1647
MB/s

1644
MB/s

1572
MB/s

1559
MB/s

9 369
MB/s

737
MB/s

1073
MB/s

1393
MB/s

1573
MB/s

1578
MB/s

1669
MB/s

1587
MB/s

1634
MB/s

1524
MB/s

1478
MB/s

1588
MB/s

2x SATA III SSD in raid1

Direct queue

Table 3: pytables complevel (down) vs. number of parallel processes
(across) :header-rows: 1

1 2 3 4 5 6 7 8 9 10 11 12
0 358

MB/s
706
MB/s

821
MB/s

914
MB/s

960
MB/s

984
MB/s

996
MB/s

1009
MB/s

1012
MB/s

1027
MB/s

1026
MB/s

1013
MB/s

3 355
MB/s

686
MB/s

810
MB/s

915
MB/s

953
MB/s

985
MB/s

996
MB/s

1006
MB/s

1011
MB/s

1023
MB/s

1023
MB/s

1032
MB/s

9 237
MB/s

477
MB/s

687
MB/s

847
MB/s

907
MB/s

957
MB/s

988
MB/s

1012
MB/s

1033
MB/s

1048
MB/s

1056
MB/s

1062
MB/s

1.5. Benchmarking 9

multitables Documentation, Release 2.0.0

Generator

Table 4: pytables complevel (down) vs. number of parallel processes
(across) :header-rows: 1

Com-
plevel/n_proc

1 2 3 4 5 6 7 8 9 10 11 12

0 338
MB/s

661
MB/s

797
MB/s

906
MB/s

941
MB/s

974
MB/s

980
MB/s

970
MB/s

999
MB/s

998
MB/s

1001
MB/s

1003
MB/s

3 338
MB/s

657
MB/s

796
MB/s

889
MB/s

938
MB/s

952
MB/s

977
MB/s

962
MB/s

981
MB/s

989
MB/s

982
MB/s

976
MB/s

9 239
MB/s

473
MB/s

677
MB/s

822
MB/s

898
MB/s

942
MB/s

968
MB/s

985
MB/s

994
MB/s

995
MB/s

1004
MB/s

1002
MB/s

SATA III 7200 RPM HDD

Direct queue

Table 5: pytables complevel (down) vs. number of parallel processes
(across)

1 2 3 4 5 6
0 97 MB/s 97 MB/s 69 MB/s 67 MB/s 68 MB/s 62 MB/s
3 103 MB/s 94 MB/s 69 MB/s 66 MB/s 68 MB/s 62 MB/s
9 101 MB/s 92 MB/s 65 MB/s 66 MB/s 70 MB/s 63 MB/s

Generator

Table 6: pytables complevel (down) vs. number of parallel processes
(across)

1 2 3 4 5 6
0 119 MB/s 94 MB/s 72 MB/s 69 MB/s 68 MB/s 62 MB/s
3 121 MB/s 94 MB/s 69 MB/s 70 MB/s 67 MB/s 62 MB/s
9 119 MB/s 92 MB/s 60 MB/s 66 MB/s 70 MB/s 63 MB/s

1.5.2 Using zlib

NVMe SSD

10 Chapter 1. Contents

multitables Documentation, Release 2.0.0

Direct queue

Table 7: pytables complevel (down) vs. number of parallel processes
(across) :header-rows: 1

1 2 3 4 5 6 7 8 9 10 11 12
0 958

MB/s
1773
MB/s

2132
MB/s

2202
MB/s

2393
MB/s

2249
MB/s

2345
MB/s

2243
MB/s

2373
MB/s

2262
MB/s

2290
MB/s

2171
MB/s

3 301
MB/s

597
MB/s

902
MB/s

1208
MB/s

1497
MB/s

1766
MB/s

1869
MB/s

2073
MB/s

2116
MB/s

2302
MB/s

2149
MB/s

2390
MB/s

9 269
MB/s

524
MB/s

787
MB/s

1047
MB/s

1234
MB/s

1499
MB/s

1621
MB/s

1647
MB/s

1684
MB/s

1934
MB/s

2021
MB/s

1934
MB/s

Generator

Table 8: pytables complevel (down) vs. number of parallel processes
(across) :header-rows: 1

1 2 3 4 5 6 7 8 9 10 11 12
0 830

MB/s
1444
MB/s

1629
MB/s

1706
MB/s

1599
MB/s

1721
MB/s

1746
MB/s

1761
MB/s

1740
MB/s

1773
MB/s

1872
MB/s

1689
MB/s

3 297
MB/s

581
MB/s

869
MB/s

1153
MB/s

1412
MB/s

1590
MB/s

1575
MB/s

1653
MB/s

1623
MB/s

1655
MB/s

1644
MB/s

1546
MB/s

9 258
MB/s

504
MB/s

766
MB/s

1004
MB/s

1192
MB/s

1402
MB/s

1486
MB/s

1478
MB/s

1517
MB/s

1601
MB/s

1542
MB/s

1554
MB/s

1.5.3 Conclusion

Parallel reads hurt performance on HDDs. This is expected, as seek time is a major limiter in this case.

Parallel reads can give at least a 2x performance increase when using SSDs. Diminishing returns kick in above 4
processes.

While high levels of compression can have a serious processing overhead on single processor reads, parallel reads
can achieve parity with an uncompressed dataset. Thus, the compression ratio of the data will translate directly to
increased read performance.

There is no appreciable difference between the direct, low level access and the generator access method and low read
speeds. The limiting factor in that regime is the read speed. At high read speeds, a significant difference is observed;
therefore, one should use the direct, low-level access method when high speed NVMe storage is available.

1.5.4 Running the benchmark

Running the benchmark requires HDF5 to be built with the --enable-direct-vfd configure option (and then a
recompile of pytables), to enable bypassing of the filesystem cache. If the direct driver is not available on your system,
the driver may be turned off. However, in this case alternative measures must be taken to avoid the filesystem cache
(such as using an appropriately large benchmarking file).

Additionally the benchmark requires the tqdm python package.

The most accurate results for your use case can only be obtained by testing the library directly in your application.

1.5. Benchmarking 11

multitables Documentation, Release 2.0.0

1.6 Reference

class multitables.Streamer(filename, **kw_args)
Provides methods for streaming data out of HDF5 files.

class Queue(request_pool, stop, block_size)
Abstract queue that is backed by the internal circular buffer.

close()
Signals to the background processes to stop, and closes the queue.

get()
Get the next element from the queue of data. This method returns a guard object that synchronises
access to the underlying buffer. The guard, when placed in a with statement, returns a reference to the
next available element in the buffer. This method blocks until data is available.

Returns A guard object that returns a reference to the element.

iter()
Convenience method for easy iteration over elements in the queue. Each iteration of the iterator will
block until an element is available to be read.

Returns An iterator for the queue.

get_generator(path, n_procs=None, read_ahead=None, cyclic=False, block_size=None, or-
dered=False, field=None, remainder=True)

Get a generator that allows convenient access to the streamed data. Elements from the dataset are returned
from the generator one row at a time. Unlike the direct access queue, this generator also returns the
remainder elements. Additional arguments are forwarded to get_queue. See the get_queue method for
documentation of these parameters.

Parameters path –

Returns A generator that iterates over the rows in the dataset.

get_queue(path, n_procs=None, read_ahead=None, cyclic=False, block_size=None, ordered=False,
field=None, remainder=False)

Get a queue that allows direct access to the internal buffer. If the dataset to be read is chunked, the
block_size should be a multiple of the chunk size to maximise performance. In this case it is best to leave
it to the default. When cyclic=False, and block_size does not divide the dataset evenly, the remainder
elements will not be returned by the queue. When cyclic=True, the remainder elements will be part of
a block that wraps around the end and includes element from the beginning of the dataset. By default,
blocks are returned in the order in which they become available. The ordered option will force blocks to
be returned in on-disk order.

Parameters

• path – The HDF5 path to the dataset that should be read.

• n_procs – The number of background processes used to read the datset in parallel.

• read_ahead – The number of blocks to allocate in the internal buffer.

• cyclic – True if the queue should wrap at the end of the dataset.

• block_size – The size along the outer dimension of the blocks to be read. Defaults to
a multiple of the chunk size, or to a 128KB sized block if the dataset is not chunked.

• ordered – Force the reader return data in on-disk order. May result in performance
penalty.

• field – The field or column name to read. If omitted, all fields/columns are read.

12 Chapter 1. Contents

multitables Documentation, Release 2.0.0

• remainder – Also return the remainder elements, these will be returned as array smaller
than the block size.

Returns A queue object that allows access to the internal buffer.

get_remainder(path, block_size)
Get the remainder elements. These elements will not be read in the direct queue access cyclic=False mode.

Parameters

• path – The HDF5 path to the dataset to be read.

• block_size – The block size is used to calculate which elements will remain.

Returns A copy of the remainder elements as a numpy array.

class multitables.Reader(filename, n_procs=4, notify=None, **kw_args)
Provides methods for random access of HDF5 datasets.

close(wait=False)
Close the reader. After this point, no more requests can be made. Pending requests will still be fulfilled.
Any attempt to made additional requests will raise an exception. Once all requests have been fulfilled, the
background processes and threads will be shut down.

Parameters wait – If True, block until all background threads/processes have shut down. False
by default.

get_dataset(path)
Create a dataset proxy that can be used to create requests. :param path: The internal HDF5 path to the
dataset within the HDF5 file. :return: A dataset proxy object.

request(key, stage)
Generate and queue a request. The details of the request should be provided in the key argument, through
operations on one of the dataset proxy objects generated by get_dataset. The result of the request will be
stored in the provided stage. A request object will be returned, which can be used to wait on the result
and access the result when it is ready. :param key: Operations created by a dataset proxy. :param stage: A
stage or stage pool in which the result will be stored. :return: A request object.

stop()
Stop the reader. All background processes and threads will immediately shut down. This will invalidate all
pending requests. Attempts to access pending requests, or already waiting requests will raise an exception
stating that the reader has stopped.

class multitables.RequestPool
A helper class for managing a pool of requests.

add(req)
Add a request to the pool. :param req: An object instance that should be place in the pool.

next()
Get the next object in the pool. Blocks until an object is available. :return: The next object in the pool.

exception multitables.QueueClosedException

exception multitables.SubprocessException
Base class for forwarding exceptions that happen inside a subprocess.

exception multitables.SharedMemoryError

class multitables.dataset.TableDataset(reader, path, dtype, shape)
Proxy for dataset operations on pytables Tables.

1.6. Reference 13

multitables Documentation, Release 2.0.0

col(name)
Proxy a column retrieval operation. The interface for this method is equivalent to the pytables method of
the same name.

read(start=None, stop=None, step=None, field=None)
Proxy a read operation. The interface for this method is equivalent to the pytables method of the same
name.

read_coordinates(coords, field=None)
Proxy a coordinate read operation. The interface for this method is equivalent to the pytables method of
the same name.

read_sorted(sortby, checkCSI=False, field=None, start=None, stop=None, step=None)
Proxy a sorted read operation. The interface and requirements for this method are equivalent to the pytables
method of the same name.

where(condition, condvars=None, start=None, stop=None, step=None)
Proxy a conditional selection operations. The interface for this method are equivalent to the pytables
method of the same name.

class multitables.dataset.ArrayDataset(reader, path, dtype, shape)

read(start=None, stop=None, step=None)
Proxy a read operation. The interface for this method is equivalent to the pytables method of the same
name.

class multitables.dataset.VLArrayDataset(reader, path, dtype, shape)

read(start=None, stop=None, step=None)
Proxy a read operation. The interface for this method is equivalent to the pytables method of the same
name.

class multitables.request.Request(details, stage)
Public interface for managing requests.

get()
A safe method for accessing the result of the request. This method makes a copy of the result and returns
it. This copy can be used in any fashion, as it no longer has resource contraints. :return: A copy of the
result of the request.

get_direct(action)
A safer method for directly accessing the shared memory. This method blocks until the request is fulfilled.
Once ready, it called the provided action function with a direct reference to the shared memory as an
argument. Care should be taken that this direct reference does not leave the scope of the function, or else
the problems enumerated in the get_unsafe context manager may result.

Parameters action – A function that takes one argument, which will be supplied as a direct
reference to the shared memory.

get_proxy()
A safe context manager for indirectly accessing the shared memory. This manager waits until the request
is fulfilled. Once ready, it yields a proxy to the underlying shared memory. Once the context manager
expires, the proxy will be released, and access to the shared memory is no longer possible. Any attempt to
access the shared memory past this point raises an exception.

get_unsafe()
A context manager for accessing the result of the request directly. This manager waits until the request
is fulfilled. Once ready, it yields a direct reference to the underlying shared memory. If an exception
was raised when fielding this request, the exception is re-raised here. Use of this context manager can be

14 Chapter 1. Contents

multitables Documentation, Release 2.0.0

unsafe, as it yields a direct reference to the shared memory. If this reference is not properly managed, it
can lead to a dangling pointer that causes an exception when the associated stage is closed. The contents
of this dangling pointer will also change when the associated stage is re-used for another request. It is
recommended to use a safer access method, or immediately delete or set to None the local variable bound
to the yielded reference after use.

1.6. Reference 15

multitables Documentation, Release 2.0.0

16 Chapter 1. Contents

CHAPTER 2

Licence

This software is distributed under the MIT licence. See the LICENSE.txt file for details.

17

https://github.com/ghcollin/multitables/blob/master/LICENSE.txt

multitables Documentation, Release 2.0.0

18 Chapter 2. Licence

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19

multitables Documentation, Release 2.0.0

20 Chapter 3. Indices and tables

Python Module Index

m
multitables, 12
multitables.dataset, 13
multitables.request, 14

21

multitables Documentation, Release 2.0.0

22 Python Module Index

Index

A
add() (multitables.RequestPool method), 13
ArrayDataset (class in multitables.dataset), 14

C
close() (multitables.Reader method), 13
close() (multitables.Streamer.Queue method), 12
col() (multitables.dataset.TableDataset method), 13

G
get() (multitables.request.Request method), 14
get() (multitables.Streamer.Queue method), 12
get_dataset() (multitables.Reader method), 13
get_direct() (multitables.request.Request method),

14
get_generator() (multitables.Streamer method), 12
get_proxy() (multitables.request.Request method),

14
get_queue() (multitables.Streamer method), 12
get_remainder() (multitables.Streamer method), 13
get_unsafe() (multitables.request.Request method),

14

I
iter() (multitables.Streamer.Queue method), 12

M
multitables (module), 12
multitables.dataset (module), 13
multitables.request (module), 14

N
next() (multitables.RequestPool method), 13

Q
QueueClosedException, 13

R
read() (multitables.dataset.ArrayDataset method), 14

read() (multitables.dataset.TableDataset method), 14
read() (multitables.dataset.VLArrayDataset method),

14
read_coordinates() (multita-

bles.dataset.TableDataset method), 14
read_sorted() (multitables.dataset.TableDataset

method), 14
Reader (class in multitables), 13
Request (class in multitables.request), 14
request() (multitables.Reader method), 13
RequestPool (class in multitables), 13

S
SharedMemoryError, 13
stop() (multitables.Reader method), 13
Streamer (class in multitables), 12
Streamer.Queue (class in multitables), 12
SubprocessException, 13

T
TableDataset (class in multitables.dataset), 13

V
VLArrayDataset (class in multitables.dataset), 14

W
where() (multitables.dataset.TableDataset method), 14

23

	Contents
	Quick Start
	How To
	Streamer
	Reader
	Benchmarking
	Reference

	Licence
	Indices and tables
	Python Module Index
	Index

